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Continuous and Semi-Continuous
Chromatographic Systems

Periodic Counter-Current Chromatography (PCC): Continuous
bind-elute/capture; relatively simple process.

Simulated Moving Bed (SMB) and related approaches: Continuous
capture or polishing, can be complex.

Multicolumn Countercurrent Solvent Gradient Purification
(MCSGP): Enables gradient operation.

Continuous Countercurrent Tangential Chromatography (CCTG):
Enables truly continuous operation, uses resins slurries and
membranes.
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Figure 5. Three-stage elution step in continuous countercurrent tangential chromatography (CCTC).
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Emerging and Enabling Technologies In
Chromatography

\ Availability of affinity capture agents for new classes of biological

products (enables platform process).

\ Availability of new high capacity short residence time adsorptive
materials for rapid cycling of these operations (reduced footprint).

Predictive methods for rapidly identifying both materials and modes of
operation for use in optimal, robust integrated processes (more rapid
process development and more robust integrated processes).

Proper understanding and utilization of orthogonal modes of
selectivity for the removal of process and product related impurities
(enables minimal downstream steps and more robust integrated
processes).

Optimal integration of continuous, semi-continuous and batch
chromatographic processes into a seamless, integrated downstream
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Affinity Capture Agents




Work Flow for Identification of Affinity Peptides
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Resin Screening Procedures
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Advances In Adsorptive Materials

AOngoing advances in Resins
AMonoliths

AMembranes

ANanofibers

A3-D Resin Materials



High Capacity/Short Residence Time Materials

Natrix HD Membrane — 2 Components

1. Reinforcing mesh “skeleton”

v" Provides mechanical strength &
durability to composite membrane

v" Polypropylene — good chemical stability

2. Porous polymer gel

v 3D macroporous structure provides:

* alarge surface area that contains a high
density of protein binding groups

* Interconnected pores that provide
convective flow channels

v Polymer chemistry can be quickly
tailored to fit application

Courtesy ofNatrix




R. Jacquemart et al / Computational and Structural Biotechnology Journal 14 (2016) 309-318
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Nanofiber Supports (Bracewell lab)

0. Hardick et al / Jowrnal of Biotechnology 213 (2015) 74-82

Clean Nagofibre Nanofibre After 30 minutes

0. Hordick et ol { Jowrno! of Bintechnology 213 (2015) 7 -62




3-D Printed Adsorptive Materials (Fee Lab)
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Fig 3. CAD designs versus printed cutaway columns (a) SC CAD model (b) SC printed model {c) 20« magnification of SC beads (d) PC CAD model (&) PC printed model (f)
20x magnification of parallel channels (g) HC CAD model (h) HC printed model {1) 20« magnification of herringbone channels.
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Advances In Understanding and
Predicting Selectivity

Protein Surface Ligand Surfaces
Properties Chemistry
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Assembling a Mixeanode CationExchange Ligand
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Woo et al., J. Chromatogr. A., 1407-68 (2015).
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